5.3 Boosting

1.boosting集成原理

1.1 什么是boosting

image-20190214160534929

随着学习的积累从弱到强

简而言之:每新加入一个弱学习器,整体能力就会得到提升

代表算法:Adaboost,GBDT,XGBoost

1.2 实现过程:

1.训练第一个学习器

image-20190214160657608

2.调整数据分布

image-20190214160727582

3.训练第二个学习器

image-20190214160805813

4.再次调整数据分布

image-20190214160900951

5.依次训练学习器,调整数据分布

image-20190214160951473

6.整体过程实现

image-20190214161215163

关键点:

如何确认投票权重?

如何调整数据分布?

image-20190214161243306

image-20190214161305414

AdaBoost的构造过程小结

image-20190214161432444

bagging集成与boosting集成的区别:

区别一:数据方面

Bagging:对数据进行采样训练;

Boosting:根据前一轮学习结果调整数据的重要性。

区别二:投票方面

Bagging:所有学习器平权投票;

Boosting:对学习器进行加权投票。

区别三:学习顺序

Bagging的学习是并行的,每个学习器没有依赖关系;

Boosting学习是串行,学习有先后顺序。

区别四:主要作用

Bagging主要用于提高泛化性能(解决过拟合,也可以说降低方差)

Boosting主要用于提高训练精度 (解决欠拟合,也可以说降低偏差)

image-20190214161702237

1.3 api介绍

2 GBDT(了解)

梯度提升决策树(GBDT Gradient Boosting Decision Tree) 是一种迭代的决策树算法该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就被认为是泛化能力(generalization)较强的算法。近些年更因为被用于搜索排序的机器学习模型而引起大家关注。

GBDT = 梯度下降 + Boosting + 决策树

2.1 梯度的概念(复习)

image-20190307230334007

image-20190307230359850

image-20190307230759175

2.2 GBDT执行流程

image-20190307231055168

如果上式中的hi(x)=决策树模型,则上式就变为:

GBDT = 梯度下降 + Boosting + 决策树

2.3 案例

预测编号5的身高:

编号 年龄(岁) 体重(KG) 身高(M)
1 5 20 1.1
2 7 30 1.3
3 21 70 1.7
4 30 60 1.8
5 25 65 ?

第一步:计算损失函数,并求出第一个预测值:

image-20190307231938147

第二步:求解划分点

image-20190307232225237

得出:年龄21为划分点的方差=0.01+0.0025=0.0125

第三步:通过调整后目标值,求解得出h1(x)

image-20190307232510232

第四步:求解h2(x)

image-20190307232816506

… …

得出结果:

image-20190307232909127

编号5身高 = 1.475 + 0.03 + 0.275 = 1.78

2.4 GBDT主要执行思想

1.使用梯度下降法优化代价函数;

2.使用一层决策树作为弱学习器,负梯度作为目标值;

3.利用boosting思想进行集成。

3.XGBoost【了解】

XGBoost= 二阶泰勒展开+boosting+决策树+正则化

  • 面试题:了解XGBoost么,请详细说说它的原理

回答要点:二阶泰勒展开,boosting,决策树,正则化

Boosting:XGBoost使用Boosting提升思想对多个弱学习器进行迭代式学习

二阶泰勒展开:每一轮学习中,XGBoost对损失函数进行二阶泰勒展开,使用一阶和二阶梯度进行优化。

决策树:在每一轮学习中,XGBoost使用决策树算法作为弱学习进行优化。

正则化:在优化过程中XGBoost为防止过拟合,在损失函数中加入惩罚项,限制决策树的叶子节点个数以及决策树叶子节点的值。

4 什么是泰勒展开式【拓展】

image-20190307234553645

泰勒展开越多,计算结果越精确